How to play misere GARDNER: An arbitrary number of coins are placed on the vertices of the large heptagon-shaped graph. Two players take turns sliding one coin along a single directed edge. The player who slides the final coin to the vertex G loses the game. The figure above encodes information that allows misere GARDNER to be played perfectly. The indistinguishability quotient of misere GARDNER is a commutative monoid with 14 elements that are represented as monomials in three variables a, b, and c that should be reduced via the misere GARDNER indistinguishability relations (in blue). For more explanation, visit http://tinyurl.com/7fy3d

How to play misere GARDNER: An arbitrary number of coins are placed on the vertices of the large heptagon-shaped graph. Two players take turns sliding one coin along a single directed edge. The player who slides the final coin to the vertex G loses the game. The figure above encodes information that allows misere GARDNER to be played perfectly. The indistinguishability quotient of misere GARDNER is a commutative monoid with 14 elements that are represented as monomials in three variables a, b, and c that should be reduced via the misere GARDNER indistinguishability relations (in blue). For more explanation, visit http://tinyurl.com/7fy3d

How to play misere GARDNER: An arbitrary number of coins are placed on the vertices of the large heptagon-shaped graph. Two players take turns sliding one coin along a single directed edge. The player who slides the final coin to the vertex G loses the game. The figure above encodes information that allows misere GARDNER to be played perfectly. The indistinguishability quotient of misere GARDNER is a commutative monoid with 14 elements that are represented as monomials in three variables a, b, and c that should be reduced via the misere GARDNER indistinguishability relations (in blue). For more explanation, visit http://tinyurl.com/7fy3d

How to play misere GARDNER: An arbitrary number of coins are placed on the vertices of the large heptagon-shaped graph. Two players take turns sliding one coin along a single directed edge. The player who slides the final coin to the vertex G loses the game. The figure above encodes information that allows misere GARDNER to be played perfectly. The indistinguishability quotient of misere GARDNER is a commutative monoid with 14 elements that are represented as monomials in three variables a, b, and c that should be reduced via the misere GARDNER indistinguishability relations (in blue). For more explanation, visit http://tinyurl.com/7fy3d

How to play misere GARDNER: An arbitrary number of coins are placed on the vertices of the large heptagon-shaped graph. Two players take turns sliding one coin along a single directed edge. The player who slides the final coin to the vertex G loses the game. The figure above encodes information that allows misere GARDNER to be played perfectly. The indistinguishability quotient of misere GARDNER is a commutative monoid with 14 elements that are represented as monomials in three variables a, b, and c that should be reduced via the misere GARDNER indistinguishability relations (in blue). For more explanation, visit http://tinyurl.com/7fy3d

How to play misere GARDNER: An arbitrary number of coins are placed on the vertices of the large heptagon-shaped graph. Two players take turns sliding one coin along a single directed edge. The player who slides the final coin to the vertex G loses the game. The figure above encodes information that allows misere GARDNER to be played perfectly. The indistinguishability quotient of misere GARDNER is a commutative monoid with 14 elements that are represented as monomials in three variables a, b, and c that should be reduced via the misere GARDNER indistinguishability relations (in blue). For more explanation, visit http://tinyurl.com/7fy3d

How to play misere GARDNER: An arbitrary number of coins are placed on the vertices of the large heptagon-shaped graph. Two players take turns sliding one coin along a single directed edge. The player who slides the final coin to the vertex G loses the game. The figure above encodes information that allows misere GARDNER to be played perfectly. The indistinguishability quotient of misere GARDNER is a commutative monoid with 14 elements that are represented as monomials in three variables a, b, and c that should be reduced via the misere GARDNER indistinguishability relations (in blue). For more explanation, visit http://tinyurl.com/7fy3d

How to play misere GARDNER: An arbitrary number of coins are placed on the vertices of the large heptagon-shaped graph. Two players take turns sliding one coin along a single directed edge. The player who slides the final coin to the vertex G loses the game. The figure above encodes information that allows misere GARDNER to be played perfectly. The indistinguishability quotient of misere GARDNER is a commutative monoid with 14 elements that are represented as monomials in three variables a, b, and c that should be reduced via the misere GARDNER indistinguishability relations (in blue). For more explanation, visit http://tinyurl.com/7fy3d

How to play misere GARDNER: An arbitrary number of coins are placed on the vertices of the large heptagon-shaped graph. Two players take turns sliding one coin along a single directed edge. The player who slides the final coin to the vertex G loses the game. The figure above encodes information that allows misere GARDNER to be played perfectly. The indistinguishability quotient of misere GARDNER is a commutative monoid with 14 elements that are represented as monomials in three variables a, b, and c that should be reduced via the misere GARDNER indistinguishability relations (in blue). For more explanation, visit http://tinyurl.com/7fy3d